Species Card of Copepod
Calanoida ( Order )
    Eucalanoidea ( Superfamily )
        Rhincalanidae ( Family )
            Rhincalanus ( Genus )
Rhincalanus nasutus  Giesbrecht, 1888   (F,M)
Syn.: Rhincalanus gigas : T. Scott,1901; A. Scott, 1909 (p.24, Rem.); Sewell, 1914 a (p.204, Rem.);
Eucalanus nasutus Sars, 1912 (p.654); Massuti Alzamora, 1942 (p.110); Baessa De Aguiar, 1991 (1993) (p.106);
Ref.:
Giesbrecht, 1892 (p.152, 160, figs.F,M); Giesbrecht & Schmeil, 1898 (p.22); Sars, 1901 a (1903) (p.15, figs.F); Thompson & Scott, 1903 (p.233, 242); Esterly, 1905 (p.136, figs.F); Farran, 1908 b (p.22); Wolfenden, 1911 (p.194); With, 1915 (p.44, figs.F,M); Willey, 1918 (1919) (p.186, figs. juv.); Lysholm & Nordgaard, 1921 (p.9); Sars, 1925 (p.23); Farran, 1926 (p.232); Sewell, 1929 (p.58, 60, fig.F, Rem.); Rose, 1929 (p.15); Farran, 1929 (p.208, 220); Sewell, 1929 (p.58, fig.); Sciacchinato, 1930 (p.9, figs.F); Wilson, 1932 a (p.34, figs.F,M); Dakin & Colefax, 1933 (p.204); Jespersen, 1934 (p.47, fig.11); Tanaka, 1935 (p.151, figs.F,M); Farran, 1936 a (p.79); Gibbons, 1936 (p.385, figs.N); Mori, 1937 (1964) (p.26, figs.F,M); Dakin & Colefax, 1940 (p.95, figs.F,M); Jespersen, 1940 (p.13, fig.3); Wilson, 1942 a (p.205, fig.F); Pesta, 1943 (p.12, figs.F,M); Vervoort, 1946 (p.122, Rem.); Sewell, 1947 (p.49, Rem.); Brodsky, 1950 (1967) (p.107, figs.F,M); Farran & Vervoort, 1951 b (n°34, p.3, figs.F,M); Marques, 1953 (p.95, figs.F, M juv.); Tanaka, 1956 (p.271); Vervoort, 1957 (p.33, Rem.); Marques, 1959 (p.207); Ganapati & Shanthakumari, 1962 (p.7, 16); Fagetti, 1962 (p.10); Grice, 1962 (p.183); Vervoort, 1963 b (p.101); Mazza, 1962 (p.332, figs.F); Chen & Zhang, 1965 (p.38, figs.F); Saraswathy, 1966 (1967) (p.75); Owre & Foyo, 1967 (p.37, figs.F,M); Mazza, 1967 (p.89, figs.F,M, juv.); Marques, 1968 a (p.396); Vinogradov, 1968 (1970) (p.268, 277); Vilela, 1968 (p.10, figs.F); Ramirez, 1969 (p.49, figs.F, Rem.); Corral Estrada, 1970 (p.82); Minoda, 1971 (p.18); Bradford, 1972 (p.34, figs.F, juv.M); Razouls, 1972 (p.94, Annexe: p.13, figs.F,M); Vives & al., 1975 (p.35, tab.II); Goswami & Goswami, 1979 (p.103, figs.); Dawson & Knatz, 1980 (p.4, figs.F,M); Björnberg & al., 1981 (p.621, figs.F,M); Gardner & Szabo, 1982 (p.160, figs.F,M); Schnack, 1982 (p.145, fig.Md); Brodsky & al., 1983 (p.202, figs.F,M, Rem.); Roe, 1984 (p.356); Sazhina, 1985 (p.38, figs. N); Baessa de Aguiar, 1986 (1989) (p.59, Rem.); Zheng Zhong & al., 1989 (p.230, figs.F,M); Schnack, 1989 (p.137, tab.1, fig.6: Md); Huys & Boxshall, 1991 (p.66, fig.); Bradford-Grieve, 1994 (p.85, figs.F,M, fig. 100); Mazzocchi & al., 1995 (p.125, figs.F, Rem.); Chihara & Murano, 1997 (p.787, Pl.96: F,M); Hure & Krsinic, 1998 (p.20, 100); Lapernat, 1999 (p.16, 55); Bradford-Grieve & al., 1999 (p.878, 912, figs.F,M); Conway & al., 2003 (p.170, figs.F,M, Rem.); Goetze, 2003 (p.2322 & suiv.); G. Harding, 2004 (p.39, figs.F,M); Boxshall & Halsey, 2004 (p.176; p.177: figs.F); Mulyadi, 2004 (p.122, figs.F,M, Rem.); Vives & Shmeleva, 2007 (p.886, figs.F,M, Rem.) ; Hidalgo & al., 2012 (p.1025, stages N, copepodis 1-5); Andronov, 2014 (p.36, fig.: A2)
Species Rhincalanus nasutus - Plate 1 of morphological figuresissued from : J.M. Bradford-Grieve in The Marine Fauna of New Zealand: Pelagic Calanoid Copepoda. National Institute of Water and Atmospheric Research (NIWA). New Zealand Oceanographic Institute Memoir, 102, 1994. [p.86, Fig.46].
Female: A, habitus (dorsal); B, urosome (dorsal); C, forehead (lateral right side); D, Md (mandibular palp); E, P1; F, P5.

Male: G, habitus (dorsal); H, urosome (dorsal); I, P5.

There appear to be some differences between Giesbrecht's (1892) figures and the Southwest Pacific specimens.


Species Rhincalanus nasutus - Plate 2 of morphological figuresissued from : G.O. Sars in An Account of the Crustacea of Norway. Vol. IV. Copepoda Calanoida. Published by the Bergen Museum, 1903. [Pl. VI].
Female.
C = forehead (ventral wiew and lateral left side).


Species Rhincalanus nasutus - Plate 3 of morphological figuresIssued from: M.G. Mazzocchi, G. Zagami, A. Ianora, L. Guglielmo & J. Hure in Atlas of Marine Zooplankton Straits of Magellan. Copepods. L. Guglielmo & A. Ianora (Eds.), 1995. [p.126, Fig.3.20.1].
Female: A, habitus (dorsal).
Nota: Head clearly separated from the 1st thoracic somite. Caudal rami slightly asymmetrical bearing 2 tufts of hairs of anal region. Two large spines visible on dorsal side of genital somite. The3-segmented abdomen is due to fusion of the anal somite with the furca.


Species Rhincalanus nasutus - Plate 4 of morphological figures&Issued from: M.G. Mazzocchi, G. Zagami, A. Ianora, L. Guglielmo & J. Hure in Atlas of Marine Zooplankton Straits of Magellan. Copepods. L. Guglielmo A. Ianora (Eds.), 1995. [p.127, Fig.3.20.2].
Female (SEM preparation): A, habitus (dorsal); B, forehead (dorsal); C, forehead with rostral filaments (ventral); D, 4th thoracic somite and urosome (dorsal); E, anal region bearing tufts of hairs on ventral surface; F, P5.
Bars: A 1 mm; B-F 0.100 mm.


Species Rhincalanus nasutus - Plate 5 of morphological figuresissued from : G.O. Sars in An Account of the Crustacea of Norway. Vol. IV. Copepoda Calanoida. Published by the Bergen Museum, 1903. [Pl.VII].
Female. L = labrum; l = labium (paragnathes).

Nota: For Boxshall & Halsey (2004, p.176) P5 is re-interpreted as a transverse plate formed by coxae and intercoxal sclerite, a separate basis and a 1-segmented exopod. For the authors the evidence for this re-interpretation is the presence of an inner element on the proximal free segment (the inner seta on the 1st exopodal segment is lost in the vast majority of calanoids, being retained only in a few members of basal families, such as the Epactriscidae); the inner element is more likely a vestige of the endopod, identifying that segment as the basis.


Species Rhincalanus nasutus - Plate 6 of morphological figuresissued from : F.C. Ramirez in Contr. Inst. Biol. mar., Buenos Aires, 1969, 98. [p.50, Lam. VIII, figs.46, 54].
Female (from off Mar del Plata): 46, habitus (dorsal); 54, P5.
Scale bars in mm: 1.5 (46); 0.05 (54).


Species Rhincalanus nasutus - Plate 7 of morphological figuresissued from : R.B.S. Sewell in Mem. Indian Mus., 1929, X. [p.59, Fig.19].
From off SE Sri Lanka: a, forehead (lateral); b, idem in Rhincalanus gigas (from South Ocean).


Species Rhincalanus nasutus - Plate 8 of morphological figuresissued from : R.B.S. Sewell in Mem. Indian Mus., 1929, X. [p.60]. Main points of difference between R. gigas and R. nasutus.


Species Rhincalanus nasutus - Plate 9 of morphological figuresissued from : T. Mori in The pelagic Copepoda from the neighbouring waters of Japan, 1937 (2nd edit., 1964). [Pl.10, Figs.6-9].
Female: 6, P5; 9, habitus (dorsal).

Male: 7, P5; 8, habitus (dorsal).


Species Rhincalanus nasutus - Plate 10 of morphological figuresissued from : C.O. Esterly in Univ. Calif. Publs Zool., 1905, 2 (4). [p.136, Fig.10].
Female (from San Diego Region): a, habitus (dorsal); b, P5.


Species Rhincalanus nasutus - Plate 11 of morphological figuresissued from : J.M. Bradford in Mem. N. Z. Oceonogr. Inst., 1972, 54. [p.35, Fig.5 (4, 6)].
Female (from Kaikoura, New Zealand): 4, habitus (dorsal); 6, P5.
Scale bars: 1 mm (4); 0.1 mm (6).


Species Rhincalanus nasutus - Plate 12 of morphological figuresIssued from : W. Giesbrecht in Systematik und Faunistik der Pelagischen Copepoden des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. - Fauna Flora Golf. Neapel, 1892, 19 , Atlas von 54 Tafeln. [Taf.9, Fig.14].
Male: 14, P5 (anterior view).
Ps = left leg; Pd = right leg; B2 = basis; Re = exopod.


Species Rhincalanus nasutus - Plate 13 of morphological figuresIssued from : W. Giesbrecht in Systematik und Faunistik der Pelagischen Copepoden des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. - Fauna Flora Golf. Neapel, 1892, 19 , Atlas von 54 Tafeln. [Taf.9, Fig.6].
Female: 6, A1 (proximal segments 1-14; ventral view).


Species Rhincalanus nasutus - Plate 14 of morphological figuresIssued from : W. Giesbrecht in Systematik und Faunistik der Pelagischen Copepoden des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. - Fauna Flora Golf. Neapel, 1892, 19 , Atlas von 54 Tafeln. [Taf.9, Fig.6].
Female: 6, A1 'distal segments 14-25; ventral view).


Species Rhincalanus nasutus - Plate 15 of morphological figuresIssued from : W. Giesbrecht in Systematik und Faunistik der Pelagischen Copepoden des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. - Fauna Flora Golf. Neapel, 1892, 19 , Atlas von 54 Tafeln. [Taf.35, Figs.46, 47, 49].
Female: 46, head (ventral); 47, urosome (ventral); 49, habitus (lateral).


Species Rhincalanus nasutus - Plate 16 of morphological figuresissued from : R. Huys & G.A. Boxshall in Copepod Evolution. The Ray Society, 1991, 159. [p.66, Fig.2.2.13, D].
Female (from Terra Nova Expedition 1910, Stns 80-120): D, A2.


Species Rhincalanus nasutus - Plate 17 of morphological figuresissued from : R. Huys & G.A. Boxshall in Copepod Evolution. The Ray Society, 1991, 159. [p.75, Fig.2.2.22, D].
D, endopod of Mxp.


Species Rhincalanus nasutus - Plate 18 of morphological figuresIssued from : W. Giesbrecht in Systematik und Faunistik der Pelagischen Copepoden des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. - Fauna Flora Golf. Neapel, 1892, 19 , Atlas von 54 Tafeln. [Taf.12, Figs.9, 16, 17].
Female: 9, Md (palp; posterior view); 16, Mxp (anterior surface); 17, A2 (anterior surface).


Species Rhincalanus nasutus - Plate 19 of morphological figuresissued from : C. Razouls in Th. Doc. Etat Fac. Sc. Paris VI, 1972, Annexe. [Fig.25, A-B].
Female (from Banyuls, G. of Lion): B, habitus (dorsal).Male: A, habitus (dorsal).


Species Rhincalanus nasutus - Plate 20 of morphological figuresissued from : H.B. Owre & M. Foyo in Fauna Caribaea, 1, Crustacea, 1: Copepoda. Copepods of the Florida Current. [p.38, Figs.199, 200]. Redrawn after Giesbrecht, 1892.
Female: 199, P5; 200, habitus (lateral).

Nota:Forehead with a conical projection, rostral filaments not visible in dorsal view. P5 with 1 seta on the 2nd segment and 3 on the 3rd.


Species Rhincalanus nasutus - Plate 21 of morphological figuresissued from : H.B. Owre & M. Foyo in Fauna Caribaea, 1, Crustacea, 1: Copepoda. Copepods of the Florida Current, 1967. [p.11, Fig.6].
Female: 6, P4.


Species Rhincalanus nasutus - Plate 22 of morphological figuresissued from : H.B. Owre & M. Foyo in Fauna Caribaea, 1, Crustacea, 1: Copepoda. Copepods of the Florida Current, 1967. [p.21, Fig.79]. After Giesbrecht, 1892.
Male: 79, P5.

Nota: P5 terminates in a strongly curved seta.


Species Rhincalanus nasutus - Plate 23 of morphological figuresissued from : K.A. Brodsky, N.V. Vyshkvartseva, M.S. Kos & E.L. Markhaseva in Opred. Fauna SSSR., 1983, 1. [p.203, Fig.91]. After Mori, 1937; Giesbrecht, 1892.
Female & Male.
L: left leg; R: right leg.


Species Rhincalanus nasutus - Plate 24 of morphological figuresissued from : G.A. Boxshall & S.H. Halsey in An introduction to copepod diversity. The Ray Society, 2004, 166. [p.177, Fig.41]. Redrawn from Sars (1901).
Female: A, habitus (lateral); C, Md; D, P1; E, P5.

Nota: 3rd and 4thpedigerous somites each with paired spinous processes dorsally on posterior margin.


Species Rhincalanus nasutus - Plate 25 of morphological figuresIssued from : W. Giesbrecht in Systematik und Faunistik der Pelagischen Copepoden des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. - Fauna Flora Golf. Neapel, 1892, 19 , Atlas von 54 Tafeln. [Taf.12, Figs.11, 12].
Female: 11, exopod of P1; 12, P4 (anterior surface).


Species Rhincalanus nasutus - Plate 26 of morphological figuresIssued from : W. Giesbrecht in Systematik und Faunistik der Pelagischen Copepoden des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. - Fauna Flora Golf. Neapel, 1892, 19 , Atlas von 54 Tafeln. [Taf.12, Figs.10].
Female: 10, P1 (anterior surface).


Species Rhincalanus nasutus - Plate 27 of morphological figuresissued from : S.B. Schnack in Crustacean Issue, 1989, 6. [p.143, Fig.6: 7].
7, Rhincalanus nasutus (from off NW Africa, upwelling region): Cutting edge of Md.


Species Rhincalanus nasutus - Plate 28 of morphological figuresIssued from : W. Giesbrecht in Systematik und Faunistik der Pelagischen Copepoden des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. – Fauna Flora Golf. Neapel, 1892, 19 , Atlas von 54 Tafeln. [Taf.12, Fig.14].
Female: 14, P5.


Species Rhincalanus nasutus - Plate 29 of morphological figuresissued from : Mulyadi in Published by Res. Center Biol., Indonesia Inst. Sci. Bogor, 2004. [p.122, Fig.70].
Female (from Indonesian Seas): a, habitus (dorsal); b-c, forehead (lateral and ventral, respectively); d, last thoracic segment and urosome (lateral right side); e, P5.

Male: f, habitus (dorsal); g, P5.


Species Rhincalanus nasutus - Plate 30 of morphological figuresIssued from : V.N. Andronov in Russian Acad. Sci. P.P. Shirshov Inst. Oceanol. Atlantic Branch, Kaliningrad, 2014. [p.36, Fig.9, 12]. Rhincalanus nasutus after Sars, 1903.
12, Exopod of A2.

Compl. Ref.:
Cleve, 1904 a (p.196, as Rhinocalanus nasutus); Pearson, 1906 (p.8, Rem.); Rose, 1925 (p.151); Wilson, 1932 (p.32); Hardy & Gunther, 1935 (1936) (p.147, Rem.); Jespersen, 1939 (p.40); Lysholm & al., 1945 (p.9); Oliveira, 1945 (p.191); C.B. Wilson, 1950 (p.318); Østvedt, 1955 (p.14: Table 3, p.55); Kott, 1957 (p.6, 17); Yamazi, 1958 (p.147, Rem.); Conover, 1960 (p.399, Table I, respiratory rate); Deevey, 1960 (p.5, Table II, annual abundance) ; Fish, 1962 (p.9); Marshall & Orr, 1962 (tab.3); Gaudy, 1962 (p.93, 99, Rem.: p.102); Duran, 1963 (p.13); Giron-Reguer, 1963 (p.27); Gaudy, 1963 (p.20, Rem.); Ahlstrom & Thrailkill, 1963 (p.57, Table 5, abundance);Björnberg, 1963 (p.24, Rem.); Shmeleva, 1964 a (p.1068); Unterüberbacher, 1964 (p.15, Rem.); De Decker, 1964 (p.16, 24, 29); Grice & Hulsemann, 1965 (p.223); Shmeleva, 1965 b (p.1350, lengths-volume -weight relation); Furuhashi, 1966 a (p.295, vertical distribution vs mixing Oyashio/Kuroshio region); Mullin, 1966 (p.546, Table I, III, diet); Neto & Paiva, 1966 (p.20, Table III); Mazza, 1966 (p.69); 1967 (p.367); Ehrhardt, 1967 (p.737, geographic distribution), Rem.); Mullin & Brooks, 1967 (p.657, life history, fecondity, growth-feeding); Grice & Hulsemann, 1967 (p.14); Fleminger, 1967 a (tabl.1); Matthews, 1967 (p.159, Table 1, Rem.); De Decker, 1968 (p.45); Delalo, 1968 (p.137); Omori, 1969 (p.5, Table 1); Itoh, 1970 a (p.1, tab.2); Morris, 1970 (p.2300, 2302); Lee & al., 1971 (p.1150); Shih & al., 1971 (p.39, 147); Gamulin, 1971 (p.382, tab.3); Deevey, 1971 (p.224); Gueredrat, 1971 (p.300, fig.2, 10, Table 1, 2); Brodsky, 1972 (P.256); Roe, 1972 (p.277, tabl.1, tabl.2); 1972 a (p.327); Boucher & Thiriot, 1972 (p.47, Tableau 4); Heinrich, 1973 (p.95); Björnberg, 1973 (p.300, 389); Harding, 1974 (p.141, tab.2, gut contents); Corral Estrada & Pereiro Muñoz, 1974 (tab.I); Nival & al., 1974 (p.231, respiration & excrétion); Peterson & Miller, 1975 (p.642, 650, Table 3); Patel, 1975 (p.659); Boucher & al., 1975 (p.85, nutrition/enzyme); Arashkevich, 1975 (p.351, digestion time); Vives & al.: 1975 (p.35, tab.II, III, IV); Arcos, 1976 (p.85, Rem.: p.91, Table II); Peterson & Miller, 1976 (p.14, Table 1, 2, 3, abundance vs interannual variations); Deevey & Brooks, 1977 (p.256, Table 2, Station "S"); Grindley, 1977 (p.341, Table 2); Peterson & Miller, 1977 (p.717, Table 1, seasonal occurrence); Timonin & Voronina, 1977 (p.286); Carter, 1977 (1978) (p.35); Stephen & Iyer, 1979 (p.228, tab.1, 3, 4, figs.3, 4); Vaissière & Séguin, 1980 (p.23, tab.1); Svetlichnyi, 1980 (p.28, Table 1, passive submersion); Sreekmaran Nair & al., 1981 (p.493, Fig.2 cont.); Shadrin & Mel'nik, 1981 (p.82, population abundance vs. food intake); Rudyakov, 1982 (p.208, Table 2); Kovalev & Shmeleva, 1982 (p.82); Vives, 1982 (p.290); Smith S.L., 1982 (p.1347, Table 5, grazing); Turner & Dagg, 1983 (p.16, 22); Landry, 1983 (p.614, development times vs. stages); Minkina, 1983 (p.38, speed swimming); Dessier, 1983 (p.89, Tableau 1, Rem., %); Scotto di Carlo & Ianora, 1983 (p.150); Scotto di Carlo & al., 1984 (p.1044); Pieper & Holliday, 1984 (p.226, Table 1, Figs.3, 7, 8); De Decker, 1984 (p.315, 362: chart); Tremblay & Anderson, 1984 (p.5); Sameoto, 1984 (p.767, vertical migration); Longhurst, 1985 (tab.2); Brenning, 1985 a (p.24, Table 2); Baars & Oosterhuis, 1985 (p.71, Table 4: gut passage time); Brinton & al., 1986 (p.228, Table 1); Fleminger, 1986 (p.84, figs. 3, 4, Rem.); Wishner & Allison, 1986 (tab.2); Madhupratap & Haridas, 1986 (p.105, tab.1); Hakanson, 1987 (p.881, lipid content); Cowles & al., 1987 (p.653, fig.7, ingestion); Lozano Soldevilla & al., 1988 (p.57); Jimenez-Perez & Lara-Lara, 1988; Wiebe & al., 1988 (tab.7); Ohman, 1988 (p.143, Table 1: lipid content); Cervantes-Duarte & Hernandez-Trujillo, 1989 (tab.3); Echelman & Fishelson, 1990 a (tab.2 as Rhinocalanus); Heinrich, 1990 (p.16); Timonin, 1990 (p.479); Hirakawa & al., 1990 (tab.3); Peterson & al., 1990 (p.259, Table 1, feeding); Suarez & al., 1990 (tab.2); Baars & al., 1990 (p.538: Rem.); Arinardi, 1991 (p.295); Fransz & al., 1991 (p.9); Santos & Ramirez, 1991 (p.79); Hattori, 1991 (tab.1, Appendix); Shih & Marhue, 1991 (tab.3); Scotto di Carlo & al., 1991 (p.271); Suarez & Gasca, 1991 (tab.2); Morales C.E. & al., 1991 (p.455, Table I, grazing); Mullin, 1991 a (p.1381, reproduction & mortality variability); Hernandez-Trujillo, 1991 (1993) (tab.I); Suarez, 1992 (App.1); Heinrich, 1992 (p.86); Huntley & Lopez, 1992 (p.201, Table A1, B1, egg-adult weight, temperature-dependent production, growth rate); Ayukai & Hattori, 1992 (p.163, Table 5, fecal pellet production rate); Jiyalal Ram & Goswami, 1993 (p.129, tab.IV); Ashjian & Wishner, 1993 (p.483, abundance, species group distributions); Seguin & al., 1993 (p.23); Hays & al., 1994 (tab.1); Landry & al., 1994 (p.55, abundance, grazing); Farstey, 1994; Palomares Garcia & Vera, 1995 (tab.1); Shih & Young, 1995 (p.70); Hirakawa & al., 1995 (tab.2); Errhif & al., 1997 (p.422); Timonin, 1997 (p.83, Rem.); Park & Choi, 1997 (Appendix); Padmavati & al., 1998 (p.349); Noda & al., 1998 (p.55, Table 3, occurrence); Weslawski & Legezynska, 1998 (p.1238); Gilabert & Moreno, 1998 (tab.1, 2); Suarez-Morales, 1998 (p.345, Table 1); Suarez-Morales & Gasca, 1998 a (p.109); Ohman & al., 1998 (p.1709, organic composition, vertical distribution, ETS activity, egg production, dormancy: Table3); Verheye & al., 1998 (p.317, Table II); Mauchline, 1998 (tab.8, 21, 23, 33, 35, 46, 47, 63, 64, 65); Reid & Hunt, 1998 (p.310, figs.2, 3, Rem.); Smith S. & al., 1998 (p.2369, Table 6, moonsoon effects); Barange & al., 1998 (p.1663, Table 2, abundance vs STC region); Hernandez-Trujillo, 1999 (p.284, tab.1); Lavaniegos & Gonzalez-Navarro, 1999 (p.239, Appx.1); Corten, 1999 (p.191, Table 1, fig.3); Lapernat, 2000 (tabl.3, 4); Razouls & al., 2000 (p.343, Appendix); Fernandez-Alamo & al., 2000 (p.1139, Appendix); Pakhomov & al., 2000 (p.1663, Table 2, transect Cape Town-SANAE antarctic base); Suarez-Morales & al., 2000 (p.751, tab.1); Seridji & Hafferssas, 2000 (tab.1); Madhupratap & al., 2001 (figs.4, 5); d'Elbée, 2001 (tabl. 1); Hidalgo & Escribano, 2001 (p.159, tab.2); Lapernat & Razouls, 2001 (p.123, tab.1); Rebstock, 2001 (tab.2); Holmes, 2001 (p.41, as Rhinocalanus); Nakata & al., 2001 (p.335, tab.4, 5, 6, 7); Lo & al., 2001 (1139, tab.I); Sabatini & al., 2001 (p.245, fig.6); Sameoto & al., 2002 (p.13); Rebstock, 2002 (p.71, Table 3, 5, 6, Fig.2, climatic variability); Beaugrand & al., 2002 (p.1692); Beaugrand & al., 2002 (p.179, figs.5, 6); Yamaguchi & al., 2002 (p.1007, tab.1); Hsiao & al., 2004 (p.325, tab.1); Daly Yahia & al., 2004 (p.366, fig.4); Bonnet & Frid, 2004 (p.485, fig.5); CPR, 2004 (p.61, fig.183); Kazmi, 2004 (p.229); Shimode & al., 2005 (p.113 + poster); Escribano & Araneda, 2005 (p.252); Fabian & al., 2005 (178, fig.4); Berasategui & al., 2005 (p.313, fig.2); Smith & Madhupratap, 2005 (p.214, tab.6); Prusova & Smith, 2005 (p.76); Zuo & al., 2006 (p.162: tab.1); Lopez-Ibarra & Palomares-Garcia, 2006 (p.63, Tabl. 1, seasonal abundance vs El-Niño); Lavaniegos & Jiménez-Pérez, 2006 (p.153, tab.2, 3, Rem.); Mackas & al., 2006 (L22S07, Table 2); Hooff & Peterson, 2006 (p.2610); Hwang & al., 2006 (p.943, tabl. I); Hop & al., 2006 (p.182, Table 4); Hwang & al., 2007 (p.24); Dur & al., 2007 (p.197, Table IV); Cornils & al., 2007 (p.278, Table 2); Valdés & al., 2007 (p.103: tab.1); Morales C.E. & al., 2007 (p.452, fig. 8, Rem.: p.462: abundance); Cabal & al;, 2008 (289, Table 1); Morales-Ramirez & Suarez-Morales, 2008 (p.519); Fernandes, 2008 (p.465, Tabl.2); Wishner & al., 2008 (p.163, Table 2, fig.8, oxycline); Gaard & al., 2008 (p.59, Table 1, N Mid-Atlantic Ridge); Ayon & al., 2008 (p.238, Table 4: Peruvian samples); Muelbert & al., 2008 (p.1662, Table 1); Lan Y.C. & al., 2008 (p.61, Table 1, % vs stations, Table 2: indicator species); C.-Y. Lee & al., 2009 (p.151, Tab.2); Galbraith, 2009 (pers. comm.); Park & Ferrari, 2009 (p.143, Table 2, fig.1, Appendix 1, biogeography); Zhang W & al., 2009 (p.266: table 2); C.E. Morales & al., 2010 (p.158, Table 1); Hidalgo & al., 2010 (p.2089, Table 2); Goetze & Ohman, 2010 (p.2110, Table 1); Mazzocchi & Di Capua, 2010 (p.425); Dvoretsky & Dvoretsky, 2010 (p.991, Table 2); Kosobokova & al., 2011 (p.29, Table 2, Rem.: Nansen Basin); Hsiao S.H. & al., 2011 (p.475, Appendix I); Andersen N.G. & al., 2011 (p.71, Fig.3: abundance); Tutasi & al., 2011 (p.791, Table 2, 3, abundance distribution vs La Niña event); Selifonova, 2011 a (p.77, Table 1, alien species in Black Sea); Mulyadi & Rumengan, 2012 (p.202, Rem.: p.204); Bode & al., 2012 (p.108, spatial distribution vs time-series, % biomass); Lavaniegos & al., 2012 (p. 11, Appendix); Salah S. & al., 2012 (p.155, Tableau 1); Dorgham & al., 2012 (p.473, Table 4: abundance vs season); Shimode & al., 2012 (p.133, life history); Alvarez-Fernandez & al., 2012 (p.21, Rem.: Table 1); Hidalgo & al., 2012 (p.134, Table 2, 3, figs.5, 6, spatial distribution vs hydrology); Takahashi M. & al., 2012 (p.393, Table 2, water type index); Teuber & al., 2013 (p.1, Table 1, abundance vs. oxygen minimum zone); Palomares-Garcia & al., 2013 (p.1009, Table I, fig.7, abundance vs environmental factors); in CalCOFI regional list (MDO, Nov. 2013; M. Ohman, comm. pers.); Kobari & al., 2013 (p.78, Table 2); Tseng & al., 2013 (p.507, seasonal abundance); Jagadeesan & al., 2013 (p.27, Table 3, seasonal variation); Bode M. & al., 2013 (p.1, Table 1, 3, respiration rate & ETS activity); Schukat & al., 2013 (p.1, Table 1, 2, fig.2, respiration, ingestion); Hirai & al., 2013 (p.1, Table I, molecular marker); Mendoza Portillo, 2013 (p.37: Fig.7, seasonal dominance, p.42: fig.10, biomass); Julies & Kaholongo, 2013 (p.78, fig.4, Rem, %); Lidvanov & al., 2013 (p.290, Table 2, % composition); Zaafa & al., 2014 (p.67, Table I, occurrence); Bonecker & a., 2014 (p.445, Table II: frequency, horizontal & vertical distributions); Lopez-Ibarra & al., 2014 (p.453, fig.6, Table 2, biogeographical affinity); Fierro Gonzalvez, 2014 (p.1, Tab. 3, 5, occurrence, abundance); Chiba S. & al., 2015 (p.968, Table 1: length vs climate); Escribano & al., 2016 (p.1, growth rate); Benedetti & al., 2016 (p.159, Table I, fig.1, functional characters); Ben Ltaief & al., 2017 (p.1, Table III, Summer relative abundance) ; Benedetti & al., 2018 (p.1, Fig.2: ecological functional group) ; Jerez-Guerrero & al., 2017 (p.1046, Table 1: temporal occurrence)
NZ: 24

Distribution map of Rhincalanus nasutus by geographical zones
Species Rhincalanus nasutus - Distribution map 4issued from : G.A. Rebstock in Global change Biology, 2002, 8. [p.77, Fig.2 q, r].
Climatic regime shifts and decadal-scale variability in calanoid copepod populations off southern California (31°-35°N, 117°-122°W.
Cumulative sums of nonseasonal anomalies from the long-term means of copepod abundance from years 1950 to 2000.
A negative slope indicates a period of below-average anomalies; a positive slope indicates a period of above-average anomalies. Abrupt changes in slope indicate step changes. Step changes are marked with arrows (upward-pointing for increases, downward -pointing for decreases).
The October 1966 cruise (prior to the increase in sampling depth), March 1976 cruise (prior to the 1976-77 climatic regime shift), and October 1988 cruise (prior to the hypothesized 1989 climatic regime shift) are marked with vertical lines.
Species Rhincalanus nasutus - Distribution map 5issued from : A.A. Shmeleva in Bull. Inst. Oceanogr., Monaco, 1965, 65 (n°1351). [Table 6: 5 ]. Rhincalanus nasutus (from South Adriatic).
Dimensions, volume and Weight wet. Means for 50-60 specimens. Volume and weight calculated by geometrical method. Assumed that the specific gravity of the Copepod body is equal to 1, then the volume will correspond to the weight.

In that case, the relation of the calculated weight appeared to be 1.5-2.4 more than the weight determined by weighting according to the method recommended by E.V. Borutsky (1934) and F.D. Mordukhy-Boltovsky (1954).
Species Rhincalanus nasutus - Distribution map 6issued from : M.M. Mullin & E.R. Brooks in Limnol. Oceanogr., 1967, 12. [p.660, Fig.2].
Relative abundance of the developmental stages of Rhincalanus nasutus at various times over a 2-yr period in the California Current, a few kilometers offshore from Scripps Institution of Oceanography (La Jolla, San Diego)
The number associated which each histogram shows the total number of individuals of all stages of that species caught with net in a 90-m vertical tow.
The height of the shaded bar associated with each developmental stage shows the relative contribution of that stage to this total. If less than 10 individuals were found in the samples from any date, no histogram was drawn. Before 23 March 1965, no nauplii were sampled, so frequencies are based on copepodite stages only. Diagonal lines connect supposed generations.

Nota : After Mullin & Brooks, the local field population apparently completed 4 successive generations in the 29 weeks between 23 March and 12 October 1965, averaging 7.25 weeks per generation.
The results for 1966 were less clear, especially during spring. One generation was apparently completed in about 7.5 weeks between 26 April and 17 June, but there was a long delay in the early naupliar stages of the next generation so that a third generation was not produced until October.
Hence, only 2 generations seem to have been produced in 1966 in the same period in which 4 generations had apparently been produced in 1965.
In laboratory cultures of R. nasutus in which eggs were produced, the eggs were laid 2 or 3 weeks after the appearanfe of adult females. This and the rate of development (shown in Table 1) give a minimum egg-to-egg generation time of 7 to 8 weeks, similar to that of the field popyulation during summer 1965.
Egg production in cultures continued for an average of 7 weeks, so that the time from an egg to the completion of egg production by the resulting female was about 15 weeks, although the life span of these females might be almost twice this.

Concerning the fecundity, Mullin & Brooks indicate under ideal conditions, the total number of eggs produced by wild females believed to have copulated only a short time before capture (many were still carrying spermatophores). Four groups involving 57 females, gave average values of 103, 214, and 355 viable eggs/female for 10 weeks of egg production.
Species Rhincalanus nasutus - Distribution map 7issued from : M.M. Mullin & E.R. Brooks in Limnol. Oceanogr., 1967, 12. [p.658, Fig.1].
Vertical distribution of temperature at the sampling station in the California Current, a few kilometers offshore from Scripps Institution of Oceanography (La Jolla, San Diego) in various months (indicated by roman numerals).
Species Rhincalanus nasutus - Distribution map 8issued from : M.M. Mullin & E.R. Brooks in Limnol. Oceanogr., 1967, 12. [p.659, Table 1].
Approximate cumulative time (in days) required for development at 12°C in the laboratory based on 13 stocks of Rhincalanus nasutus.
Species Rhincalanus nasutus - Distribution map 9Issued from : S. Shimode, K. Takahashi, Y. Shimizu, T. Nonomura & A. Tsuda in Deep-Sea Res. I, 2012, 65. [p.143, Fig.10, a].
Schematic illustration of the most probable life cycle of Rhincalanus nasutus (a). Ontogenetic vertical migration during the year in the Kuroshio-Oyashio transition area
C = copepodite stage; AF = female adult; AM = male adult.
Compare with Rhincalanus rostrifrons restricted to more southerly latitudes (15-37°N) in the NW Pacific.

Nota: Dormancy in deep waters (500-1000 m) by R. nasutus might indicate a strategy to avoid the relatively high predation risks incurred in shallower waters, due to its larger body size. In contrast, the smaller body size of R. rostrifrons facilitates dormancy in shallower waters (200-500 m depth).
Species Rhincalanus nasutus - Distribution map 10Issued from : P.-E. Lapernat in DEA Océanogr. Biol., Univ. P. & M. Curie, Paris VI. July 5, 2000. [Fig.9 b].
Verical distribution of Rhincalanus nasutus at an eutrophic site (off Mauritanian coast: 20°32 'N, 18°36' W) in females (F) and males (M) (ind. per m3) in the day (white circle) and night (black circle).

Nota: Sampling in the water column 0-1000 m, one during the day and another during the night with BIONESS multiple-net: 0-75; 75-150; 150-250; 250-350; 350-450; 450-550; 550-700; 700-850; 850-965 m. In May-June 1992.
Species Rhincalanus nasutus - Distribution map 11Issued from : A. Fleminger inComposite stations of the Siboga Expedition (1899), the Snellius Expedition (1929) and R/V ''Alpha Helix'' Moro Expedition (1979).
Stations are indicated by small filled circles, Calanoides philippinensis records by open diamonds, and Rhincalanus nasutus records by a large filled circles.Note how positive records are concentrated off southwestern New Guinea.
Species Rhincalanus nasutus - Distribution map 12Issued from : M.D. Ohman, A.V. Drits, M.E. Clarke & S. Plourde in Deep-Sea Res. II, , 1998 , 45. [p.1719, Fig. 4 B].
Vertical distribution of copepod in the San Diego Trough in June and December. Adult female and copepodid stage V of Rhincalanus nasutus.
Dark symbols illustrate nightime distributions, open symbols illustrate daytime distributions, each plotted at the mid-point of the sampling interval. Sampling extended deeper in December than in June.
Sampling out in the San Diego Trough (near 32°50'N, 117°40'W) in 6-14 June 1992 and 15-22 December 1992.
For the authors, the species appears to enter dormancy as adult females, although the evidence is equivocal.
Species Rhincalanus nasutus - Distribution map 13Issued from : M.D. Ohman, A.V. Drits, M.E. Clarke & S. Plourde in Deep-Sea Res. II, , 1998 , 45. [p.1730, Table 3].
Differential dormancy of co-occuring copepods in the California Current System in the San Diego Trough.
Indices used to differentiate actively growing from dormant animals included developmental stage structure and vertical distribution; activity of aerobic metabolic enzymes (Citrate Synthase and Electron Transfer System complex); investment in depot lipids (wax esters and triacylglycerols); in situ grazing activity from gut fluorescence, and egg production rates.
Loc:
Antarct. (SW Atlant., SE Pacif.), South Georgia, Magallones region, sub-Antarct. (SW Atlant., Indian, SW & SE Pacif.), South Africa (E & W, STC region), Saldanha Bay, Namibia, Angola, Baia Farta, Dakar, off Mauritania-NW Cape Verde Is., Morocco-Mauritania, Cap Ghir, Canary Is., off Madeira, Portugal, off W Cabo Finisterre, Bay of Biscay, Uruguay (continental shelf), Cabo Frio, off Rio de Janeiro, S Brazil, Argentina, Barbados Is., Yucatan, G. of Mexico, Caribbean, off Bermuda, Sargasso Sea, Station "S" (32°10'N, 64°30'W), off Cape Hatteras, off E Cape Cod, Delaware Bay (outside), Chesapeake Bay, Long Island, G. of Maine, off Woods Hole, Bay of Fundy, off SE Nova Scotia, S Davis Strait, Strait of Denmark, Fram Strait, Kongsfjorden, Spitzbergen, Iceland, Faroe Is., Arct. (Nansen Basin), Barents Sea, Norway, Raunefjorden (rare), W & SW Ireland, North Sea, Ibero-moroccan Bay, Gibraltar Strait, Medit. (M'Diq, Alboran Sea, Algiers, Banyuls, Marseille, Ligurian Sea, Tyrrhenian Sea, G. of Gabes, Adriatic Sea, Black Sea), G. of Aqaba, off Sharm El-Sheikh, G. of Eilat, Red Sea, G. of Aden, G. of Oman, Arabian Sea, Somalia, Maldive Is., off Cochin, Natal, India (Saurahtra coast, Lawson's Bay, Gulf of Mannar), N Indian, off S Madagascar, Nosy Bé, S Indian (subtropical convergence), E India, Bay of Bengal, Indonesia-Malaysia, Lombok Sea, Flores Sea, Arafura Sea, Banda Sea), Philippines, Viet-Nam (Cauda Bay), G. of Tonkin, China Seas (East China Sea, South China Sea), Taiwan, Kuroshio Current, S Korea S, Tsushima Straits, Japan, Kuchinoerabu Is., Kuroshio-Oyashio transition, off NE Japan, off S Shikoku Is., Station Knot, off SE Japan, Arct. (Nansen Basin), Aleutiian Is., British Columbia, Bay of Seattle, off Washington coast, Oregon (Yaquina, off Newport), California, Santa Monica Basin, W Baja California, Bahia Magdalena (rare), Gulf of California, Guaymas Basin, W Mexico, G. of Tehuantepec, W Costa Rica, Pacif. (E equatorial), Australia (Great Barrier, New South Wales), New Zealand (Kaikoura), New Caledonia, off W Guatemala, Pacif. (equatorial & subtropical), off Panama, Bahia Cupica (Colombia), off Galapagos, off Peru, Pacif. (SE tropical), Chile ( N-S, off Valparaiso, off Santiago, Concepcion), Straits of Magellan
N: 369
Lg.:
(7) F: 5-4,5; M: 4,5-3,8; (14) F: 4,7-4,5; (22) F: 5,1-3,9; M: 3,8-2,7; (28) F: 4,75-3,85; M: 3,55; (35) F: 5-4,5; (36) F: 6,08-5,63; (38) F: 4,8-4,15; (45) F: 5,5-4; M: 4-3; (47) F: 5,1-3,9; M: 3,8; (54) F: 2,85; M: 4,3; (75) F: 4,94-2,82; (101) F: 4,37-4,08; (104) F: 4,7; M: 3,5; (116) F: 5,18; (125) F: 4,5-3,6; M: 3,81-3,74; (131) F: 6,1-3,7; (135) F: 3; M: 2,7; (142) F: 3; M: 2,7; (199) F: 5,6-4,26; M: 4,33-3,57; (207) F: 4,28-4,2; M: 3,51; (208) F: 4,8-3,9; (237) F: 4,5; (254) F: 4,7; (327) F: 5,81-4,31; M: 3,93; (290) F: 3-4,25; M: 3,35-3,4; (340) F: 3,8; (432) F: 5,2-4,2; (530) F: 4,2; M: 4; (785) F: 3,49-3,26; (786) F: 4,52-3,6; M: 3,67-3,45; (991) F: 3,9-5,5; M: 2,7-4; (1122) F: 4,05; M: 3,35; {F: 2,82-6,10; M: 2,70-4,50}

Chiba S. & al., 2015 (p.971, Table 1: Total length female (June-July) = 3.3 mm [optimal SST (°C) = 9.6].
Rem.: epi- to bathypelagic.
Sampling depth (Antarct., sub-Antarct.) : 0-500-4000 m. Sargasso Sea: 0-2000 m; 2000-1000 m (Harding, 1974).
After Yamazi (1958, p.147) this species is very rare off Tanabe (Japan).
According to Björnberg (1963, p.24) this species is only occurred at 27°09.4'S and 47°16.5'W, with salinities between 36.01 to 36.24 p.1000 and temperatures from 14.01 to 20.99°C, it had not been previously recorded in Brazilian waters.
For Kosobokova & al. (2011, Table 3) Rhincalanus nasutus is an expatriate species from Atlantic to the Arctic Ocean Basins, because the reproduction is not assumed in polar waters.
After Lapernat & Razouls (2002, p.19, from off Malta, Mediterranean Sea) the Itoh's index value = 629.5 (number of teeth: 10), and for Schnack (1989): 467.

See in DVP Conway & al., 2003 (version 1).
Last update : 05/04/2018
    to add your remark
  

 Any use of this site for a publication will be mentioned with the following reference :

Razouls C., de Bovée F., Kouwenberg J. et Desreumaux N., 2005-2018. - Diversity and Geographic Distribution of Marine Planktonic Copepods. Sorbonne Université, CNRS. Available at http://copepodes.obs-banyuls.fr/en [Accessed November 20, 2018]

© copyright 2005-2018 Sorbonne Université, CNRS

Webmaster
CNRS   Observatoire Océanologique de Banyuls sur Mer - Laboratoire Arago
Sorbonne Université

 

Version française
English version

 

Search

On the WEB of CNRS

 


Marine Planktonic Copepods

Marine Planktonic Copepods

 

Imprimer Contact Accueil Plan du site Accès restreint Retour Une du Labo Imprimer Contact Plan du site Crédits Téléchargez les Plug-Ins