Fiche d'espèce de Copépode
Calanoida ( Ordre )
    Eucalanoidea ( Superfamille )
        Rhincalanidae ( Famille )
            Rhincalanus ( Genre )
Rhincalanus nasutus  Giesbrecht, 1888   (F,M)
Syn.: Rhincalanus gigas : T. Scott,1901; A. Scott, 1909 (p.24, Rem.); Sewell, 1914 a (p.204, Rem.);
Eucalanus nasutus Sars, 1912 (p.654); Massuti Alzamora, 1942 (p.110); Baessa De Aguiar, 1991 (1993) (p.106);
Ref.:
Giesbrecht, 1892 (p.152, 160, figs.F,M); Giesbrecht & Schmeil, 1898 (p.22); Sars, 1901 a (1903) (p.15, figs.F); Thompson & Scott, 1903 (p.233, 242); Esterly, 1905 (p.136, figs.F); Farran, 1908 b (p.22); Wolfenden, 1911 (p.194); With, 1915 (p.44, figs.F,M); Willey, 1918 (1919) (p.186, figs. juv.); Lysholm & Nordgaard, 1921 (p.9); Sars, 1925 (p.23); Farran, 1926 (p.232); Sewell, 1929 (p.58, 60, fig.F, Rem.); Rose, 1929 (p.15); Farran, 1929 (p.208, 220); Sewell, 1929 (p.58, fig.); Sciacchinato, 1930 (p.9, figs.F); Wilson, 1932 a (p.34, figs.F,M); Dakin & Colefax, 1933 (p.204); Jespersen, 1934 (p.47, fig.11); Tanaka, 1935 (p.151, figs.F,M); Farran, 1936 a (p.79); Gibbons, 1936 (p.385, figs. Nauplii); Mori, 1937 (1964) (p.26, figs.F,M); Dakin & Colefax, 1940 (p.95, figs.F,M); Jespersen, 1940 (p.13, fig.3); Wilson, 1942 a (p.205, fig.F); Pesta, 1943 (p.12, figs.F,M); Vervoort, 1946 (p.122, Rem.); Sewell, 1947 (p.49, Rem.); Brodsky, 1950 (1967) (p.107, figs.F,M); Farran & Vervoort, 1951 b (n°34, p.3, figs.F,M); Marques, 1953 (p.95, figs.F, M juv.); Tanaka, 1956 (p.271); Vervoort, 1957 (p.33, Rem.); Marques, 1959 (p.207); Ganapati & Shanthakumari, 1962 (p.7, 16); Fagetti, 1962 (p.10); Grice, 1962 (p.183); Vervoort, 1963 b (p.101); Mazza, 1962 (p.332, figs.F); Chen & Zhang, 1965 (p.38, figs.F); Saraswathy, 1966 (1967) (p.75); Owre & Foyo, 1967 (p.37, figs.F,M); Mazza, 1967 (p.89, figs.F,M, juv.); Marques, 1968 a (p.396); Vinogradov, 1968 (1970) (p.268, 277); Vilela, 1968 (p.10, figs.F); Ramirez, 1969 (p.49, figs.F, Rem.); Corral Estrada, 1970 (p.82); Minoda, 1971 (p.18); Bradford, 1972 (p.34, figs.F, juv.M); Razouls, 1972 (p.94, Annexe: p.13, figs.F,M); Vives & al., 1975 (p.35, tab.II); Goswami & Goswami, 1979 (p.103, figs.); Dawson & Knatz, 1980 (p.4, figs.F,M); Björnberg & al., 1981 (p.621, figs.F,M); Gardner & Szabo, 1982 (p.160, figs.F,M); Schnack, 1982 (p.145, fig.Md); Brodsky & al., 1983 (p.202, figs.F,M, Rem.); Roe, 1984 (p.356); Sazhina, 1985 (p.38, figs. N); Baessa de Aguiar, 1986 (1989) (p.59, Rem.); Zheng Zhong & al., 1989 (p.230, figs.F,M); Schnack, 1989 (p.137, tab.1, fig.6: Md); Huys & Boxshall, 1991 (p.66, fig.); Bradford-Grieve, 1994 (p.85, figs.F,M, fig. 100); Mazzocchi & al., 1995 (p.125, figs.F, Rem.); Chihara & Murano, 1997 (p.787, Pl.96: F,M); Hure & Krsinic, 1998 (p.20, 100); Lapernat, 1999 (p.16, 55); Bradford-Grieve & al., 1999 (p.878, 912, figs.F,M); Conway & al., 2003 (p.170, figs.F,M, Rem.); Goetze, 2003 (p.2322 & suiv.); G. Harding, 2004 (p.39, figs.F,M); Boxshall & Halsey, 2004 (p.176; p.177: figs.F); Mulyadi, 2004 (p.122, figs.F,M, Rem.); Vives & Shmeleva, 2007 (p.886, figs.F,M, Rem.) ; Hidalgo & al., 2012 (p.1025, stages N, copepodis 1-5: figs.3-18); Andronov, 2014 (p.36, fig.: A2)
Espèce Rhincalanus nasutus - Planche 1 de figures morphologiquesissued from : J.M. Bradford-Grieve in The Marine Fauna of New Zealand: Pelagic Calanoid Copepoda. National Institute of Water and Atmospheric Research (NIWA). New Zealand Oceanographic Institute Memoir, 102, 1994. [p.86, Fig.46].
Female: A, habitus (dorsal); B, urosome (dorsal); C, forehead (lateral right side); D, Md (mandibular palp); E, P1; F, P5.

Male: G, habitus (dorsal); H, urosome (dorsal); I, P5.

There appear to be some differences between Giesbrecht's (1892) figures and the Southwest Pacific specimens.


Espèce Rhincalanus nasutus - Planche 2 de figures morphologiquesissued from : G.O. Sars in An Account of the Crustacea of Norway. Vol. IV. Copepoda Calanoida. Published by the Bergen Museum, 1903. [Pl. VI].
Female.
C = forehead (ventral wiew and lateral left side).


Espèce Rhincalanus nasutus - Planche 3 de figures morphologiquesIssued from: M.G. Mazzocchi, G. Zagami, A. Ianora, L. Guglielmo & J. Hure in Atlas of Marine Zooplankton Straits of Magellan. Copepods. L. Guglielmo & A. Ianora (Eds.), 1995. [p.126, Fig.3.20.1].
Female: A, habitus (dorsal).
Nota: Head clearly separated from the 1st thoracic somite. Caudal rami slightly asymmetrical bearing 2 tufts of hairs of anal region. Two large spines visible on dorsal side of genital somite. The3-segmented abdomen is due to fusion of the anal somite with the furca.


Espèce Rhincalanus nasutus - Planche 4 de figures morphologiques&Issued from: M.G. Mazzocchi, G. Zagami, A. Ianora, L. Guglielmo & J. Hure in Atlas of Marine Zooplankton Straits of Magellan. Copepods. L. Guglielmo A. Ianora (Eds.), 1995. [p.127, Fig.3.20.2].
Female (SEM preparation): A, habitus (dorsal); B, forehead (dorsal); C, forehead with rostral filaments (ventral); D, 4th thoracic somite and urosome (dorsal); E, anal region bearing tufts of hairs on ventral surface; F, P5.
Bars: A 1 mm; B-F 0.100 mm.


Espèce Rhincalanus nasutus - Planche 5 de figures morphologiquesissued from : G.O. Sars in An Account of the Crustacea of Norway. Vol. IV. Copepoda Calanoida. Published by the Bergen Museum, 1903. [Pl.VII].
Female. L = labrum; l = labium (paragnathes).

Nota: For Boxshall & Halsey (2004, p.176) P5 is re-interpreted as a transverse plate formed by coxae and intercoxal sclerite, a separate basis and a 1-segmented exopod. For the authors the evidence for this re-interpretation is the presence of an inner element on the proximal free segment (the inner seta on the 1st exopodal segment is lost in the vast majority of calanoids, being retained only in a few members of basal families, such as the Epactriscidae); the inner element is more likely a vestige of the endopod, identifying that segment as the basis.


Espèce Rhincalanus nasutus - Planche 6 de figures morphologiquesissued from : F.C. Ramirez in Contr. Inst. Biol. mar., Buenos Aires, 1969, 98. [p.50, Lam. VIII, figs.46, 54].
Female (from off Mar del Plata): 46, habitus (dorsal); 54, P5.
Scale bars in mm: 1.5 (46); 0.05 (54).


Espèce Rhincalanus nasutus - Planche 7 de figures morphologiquesissued from : R.B.S. Sewell in Mem. Indian Mus., 1929, X. [p.59, Fig.19].
From off SE Sri Lanka: a, forehead (lateral); b, idem in Rhincalanus gigas (from South Ocean).


Espèce Rhincalanus nasutus - Planche 8 de figures morphologiquesissued from : R.B.S. Sewell in Mem. Indian Mus., 1929, X. [p.60]. Main points of difference between R. gigas and R. nasutus.


Espèce Rhincalanus nasutus - Planche 9 de figures morphologiquesissued from : T. Mori in The pelagic Copepoda from the neighbouring waters of Japan, 1937 (2nd edit., 1964). [Pl.10, Figs.6-9].
Female: 6, P5; 9, habitus (dorsal).

Male: 7, P5; 8, habitus (dorsal).


Espèce Rhincalanus nasutus - Planche 10 de figures morphologiquesissued from : C.O. Esterly in Univ. Calif. Publs Zool., 1905, 2 (4). [p.136, Fig.10].
Female (from San Diego Region): a, habitus (dorsal); b, P5.


Espèce Rhincalanus nasutus - Planche 11 de figures morphologiquesissued from : J.M. Bradford in Mem. N. Z. Oceonogr. Inst., 1972, 54. [p.35, Fig.5 (4, 6)].
Female (from Kaikoura, New Zealand): 4, habitus (dorsal); 6, P5.
Scale bars: 1 mm (4); 0.1 mm (6).


Espèce Rhincalanus nasutus - Planche 12 de figures morphologiquesIssued from : W. Giesbrecht in Systematik und Faunistik der Pelagischen Copepoden des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. - Fauna Flora Golf. Neapel, 1892, 19 , Atlas von 54 Tafeln. [Taf.9, Fig.14].
Male: 14, P5 (anterior view).
Ps = left leg; Pd = right leg; B2 = basis; Re = exopod.


Espèce Rhincalanus nasutus - Planche 13 de figures morphologiquesIssued from : W. Giesbrecht in Systematik und Faunistik der Pelagischen Copepoden des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. - Fauna Flora Golf. Neapel, 1892, 19 , Atlas von 54 Tafeln. [Taf.9, Fig.6].
Female: 6, A1 (proximal segments 1-14; ventral view).


Espèce Rhincalanus nasutus - Planche 14 de figures morphologiquesIssued from : W. Giesbrecht in Systematik und Faunistik der Pelagischen Copepoden des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. - Fauna Flora Golf. Neapel, 1892, 19 , Atlas von 54 Tafeln. [Taf.9, Fig.6].
Female: 6, A1 'distal segments 14-25; ventral view).


Espèce Rhincalanus nasutus - Planche 15 de figures morphologiquesIssued from : W. Giesbrecht in Systematik und Faunistik der Pelagischen Copepoden des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. - Fauna Flora Golf. Neapel, 1892, 19 , Atlas von 54 Tafeln. [Taf.35, Figs.46, 47, 49].
Female: 46, head (ventral); 47, urosome (ventral); 49, habitus (lateral).


Espèce Rhincalanus nasutus - Planche 16 de figures morphologiquesissued from : R. Huys & G.A. Boxshall in Copepod Evolution. The Ray Society, 1991, 159. [p.66, Fig.2.2.13, D].
Female (from Terra Nova Expedition 1910, Stns 80-120): D, A2.


Espèce Rhincalanus nasutus - Planche 17 de figures morphologiquesissued from : R. Huys & G.A. Boxshall in Copepod Evolution. The Ray Society, 1991, 159. [p.75, Fig.2.2.22, D].
D, endopod of Mxp.


Espèce Rhincalanus nasutus - Planche 18 de figures morphologiquesIssued from : W. Giesbrecht in Systematik und Faunistik der Pelagischen Copepoden des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. - Fauna Flora Golf. Neapel, 1892, 19 , Atlas von 54 Tafeln. [Taf.12, Figs.9, 16, 17].
Female: 9, Md (palp; posterior view); 16, Mxp (anterior surface); 17, A2 (anterior surface).


Espèce Rhincalanus nasutus - Planche 19 de figures morphologiquesissued from : C. Razouls in Th. Doc. Etat Fac. Sc. Paris VI, 1972, Annexe. [Fig.25, A-B].
Female (from Banyuls, G. of Lion): B, habitus (dorsal).Male: A, habitus (dorsal).


Espèce Rhincalanus nasutus - Planche 20 de figures morphologiquesissued from : H.B. Owre & M. Foyo in Fauna Caribaea, 1, Crustacea, 1: Copepoda. Copepods of the Florida Current. [p.38, Figs.199, 200]. Redrawn after Giesbrecht, 1892.
Female: 199, P5; 200, habitus (lateral).

Nota:Forehead with a conical projection, rostral filaments not visible in dorsal view. P5 with 1 seta on the 2nd segment and 3 on the 3rd.


Espèce Rhincalanus nasutus - Planche 21 de figures morphologiquesissued from : H.B. Owre & M. Foyo in Fauna Caribaea, 1, Crustacea, 1: Copepoda. Copepods of the Florida Current, 1967. [p.11, Fig.6].
Female: 6, P4.


Espèce Rhincalanus nasutus - Planche 22 de figures morphologiquesissued from : H.B. Owre & M. Foyo in Fauna Caribaea, 1, Crustacea, 1: Copepoda. Copepods of the Florida Current, 1967. [p.21, Fig.79]. After Giesbrecht, 1892.
Male: 79, P5.

Nota: P5 terminates in a strongly curved seta.


Espèce Rhincalanus nasutus - Planche 23 de figures morphologiquesissued from : K.A. Brodsky, N.V. Vyshkvartseva, M.S. Kos & E.L. Markhaseva in Opred. Fauna SSSR., 1983, 1. [p.203, Fig.91]. After Mori, 1937; Giesbrecht, 1892.
Female & Male.
L: left leg; R: right leg.


Espèce Rhincalanus nasutus - Planche 24 de figures morphologiquesissued from : G.A. Boxshall & S.H. Halsey in An introduction to copepod diversity. The Ray Society, 2004, 166. [p.177, Fig.41]. Redrawn from Sars (1901).
Female: A, habitus (lateral); C, Md; D, P1; E, P5.

Nota: 3rd and 4thpedigerous somites each with paired spinous processes dorsally on posterior margin.


Espèce Rhincalanus nasutus - Planche 25 de figures morphologiquesIssued from : W. Giesbrecht in Systematik und Faunistik der Pelagischen Copepoden des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. - Fauna Flora Golf. Neapel, 1892, 19 , Atlas von 54 Tafeln. [Taf.12, Figs.11, 12].
Female: 11, exopod of P1; 12, P4 (anterior surface).


Espèce Rhincalanus nasutus - Planche 26 de figures morphologiquesIssued from : W. Giesbrecht in Systematik und Faunistik der Pelagischen Copepoden des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. - Fauna Flora Golf. Neapel, 1892, 19 , Atlas von 54 Tafeln. [Taf.12, Figs.10].
Female: 10, P1 (anterior surface).


Espèce Rhincalanus nasutus - Planche 27 de figures morphologiquesissued from : S.B. Schnack in Crustacean Issue, 1989, 6. [p.143, Fig.6: 7].
7, Rhincalanus nasutus (from off NW Africa, upwelling region): Cutting edge of Md.


Espèce Rhincalanus nasutus - Planche 28 de figures morphologiquesIssued from : W. Giesbrecht in Systematik und Faunistik der Pelagischen Copepoden des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. – Fauna Flora Golf. Neapel, 1892, 19 , Atlas von 54 Tafeln. [Taf.12, Fig.14].
Female: 14, P5.


Espèce Rhincalanus nasutus - Planche 29 de figures morphologiquesissued from : Mulyadi in Published by Res. Center Biol., Indonesia Inst. Sci. Bogor, 2004. [p.122, Fig.70].
Female (from Indonesian Seas): a, habitus (dorsal); b-c, forehead (lateral and ventral, respectively); d, last thoracic segment and urosome (lateral right side); e, P5.

Male: f, habitus (dorsal); g, P5.


Espèce Rhincalanus nasutus - Planche 30 de figures morphologiquesIssued from : V.N. Andronov in Russian Acad. Sci. P.P. Shirshov Inst. Oceanol. Atlantic Branch, Kaliningrad, 2014. [p.36, Fig.9, 12]. Rhincalanus nasutus after Sars, 1903.
12, Exopod of A2.


Espèce Rhincalanus nasutus - Planche 31 de figures morphologiquesIssued from : P. Hidalgo, F. Ferrari, S. Yañez, P. Pino & R. Escribano in Crustaceana, 2012, 85 (9). [p.1030, Fig.2]. From off Conception (central-southern Chile).
Photograph of normal eggs of Rhincalanus nasutus (Giesbrecht, 1888).
Published in colour in the online edition (http://booksandjournals. brillonline.com/content/15685403).

Nota: Eggs well-rounded with a dense pigmentation and yellowish colouration; under a compound microscope, their external membrane appears thin.
Mean egg diameter 202 µm (n = 367) and ranged between 196 and 222 µm.


Espèce Rhincalanus nasutus - Planche 32 de figures morphologiquesIssued from : P. Hidalgo, F. Ferrari, S. Yañez, P. Pino & R. Escribano in Crustaceana, 2012, 85 (9). [p.1031, Fig.3].
Ventral view of naupliar stages of Rhincalanus nasutus (Giesbrecht, 1888).
A: Naulius 2; B: Nauplius 3; C: Nauplus 4; D: Nauplus 5; E: Nauplius 6.

Nota: For this species, only naupius 2 and 5 have been described previously although there has been some confusion about the identity of tyhese stages (Gurney, 1934; Steuer, 1935).
Nauplius 2: Average body length 0.44 mm (0.41-0.49, n = 109).
Nauplius 3: Average body length 0.69 mm (0.66-0.71, n = 50).
Nauplius 4: Average body length 0.89 mm (0.88-0.90, n = 12).
Nauplius 5: Average body length 1.11 mm (1.10-1.13, n = 35).
Nauplius 6: Average body length 1.33 mm (1.29-1.35, n = 11).


Espèce Rhincalanus nasutus - Planche 33 de figures morphologiquesssued from : P. Hidalgo, F. Ferrari, S. Yañez, P. Pino & R. Escribano in Crustaceana, 2012, 85 (9). [p.1037, Fig.7].
Ventral view of copepodid stages of Rhincalanus nasutus (Giesbrecht, 1888).
A: C I; B: C II; D: C III; D: C IV female; E: C IV male; F: C V female; G: C V male.

Nota: Copepodids elongate, with transparent body; head pointed dorsally and laterally; rostrum distinctly pointed; caudal ramus with 3 terminal setae and 2 long setae on the lateral edge.
Copepodid I: Body length 1.6-1.8 mm (n = 85). A1 10-segmented (12 on the figure 8A).
Copepodid II: Body length 1.7-2.1 mm (n = 290). A1 17-segmented (16 on the figure 8B)
Copepodid III: Body length 2.2-2.6 mm (n = 152). A1 21-segmented (23 on the figure 8C).
Copepodid IV female: Body length 3.2-3.9 mm (n =65). A1 23-segmented.
Copepodid IV male: Body length 3.0-3.7mm (n = 29).
Copepodid V female: Body length 3.9-4.2 mm (n = 21). A1 23-segmented.
Copepodid V male: Body length 4.2-4.7 mm (n = 70).


Espèce Rhincalanus nasutus - Planche 34 de figures morphologiquesssued from : P. Hidalgo, F. Ferrari, S. Yañez, P. Pino & R. Escribano in Crustaceana, 2012, 85 (9). [p.1040, Fig.10].
Mandible of copepodid stages of Rhincalanus nasutus (Giesbrecht, 1888).
A; C I; B: C II; C: C III; D: C IV; E: C V.

Nota Fig.10A: Md 2-segmented protopod; coxa with well-developed toothed gnathobase with proximal seta; basipod with 4 medial setae. Endopod 2-segmented with 1 and 4 setae. Exopod 5-segmented with 1, 1, 1, 1, 2 setae


Espèce Rhincalanus nasutus - Planche 35 de figures morphologiquesssued from : P. Hidalgo, F. Ferrari, S. Yañez, P. Pino & R. Escribano in Crustaceana, 2012, 85 (9). [p.1050, Fig.18].
Swimming legs 5 of copepodid stages of Rhincalanus nasutus (Giesbrecht, 1888).
A: C IV female; B: C IV male; C: C V female; D: C V male.


Espèce Rhincalanus nasutus - Planche 36 de figures morphologiquesssued from : P. Hidalgo, F. Ferrari, S. Yañez, P. Pino & R. Escribano in Crustaceana, 2012, 85 (9). [p.1036, Table 3].
Summary of the morphometric characteristics (means) of the copepodid stages of Rhincalanus nasutus (Giesbrecht, 1888), obtained from the central-southern Chile.

Ref. compl.:
Cleve, 1904 a (p.196, as Rhinocalanus nasutus); Pearson, 1906 (p.8, Rem.); Rose, 1925 (p.151); Wilson, 1932 (p.32); Hardy & Gunther, 1935 (1936) (p.147, Rem.); Jespersen, 1939 (p.40); Lysholm & al., 1945 (p.9); Oliveira, 1945 (p.191); C.B. Wilson, 1950 (p.318); Østvedt, 1955 (p.14: Table 3, p.55); Kott, 1957 (p.6, 17); Yamazi, 1958 (p.147, Rem.); Conover, 1960 (p.399, Table I, respiratory rate); Deevey, 1960 (p.5, Table II, annual abundance) ; Fish, 1962 (p.9); Marshall & Orr, 1962 (tab.3); Gaudy, 1962 (p.93, 99, Rem.: p.102); Duran, 1963 (p.13); Giron-Reguer, 1963 (p.27); Gaudy, 1963 (p.20, Rem.); Ahlstrom & Thrailkill, 1963 (p.57, Table 5, abundance);Björnberg, 1963 (p.24, Rem.); Shmeleva, 1964 a (p.1068); Unterüberbacher, 1964 (p.15, Rem.); De Decker, 1964 (p.16, 24, 29); Grice & Hulsemann, 1965 (p.223); Shmeleva, 1965 b (p.1350, lengths-volume -weight relation); Furuhashi, 1966 a (p.295, vertical distribution vs mixing Oyashio/Kuroshio region); Mullin, 1966 (p.546, Table I, III, diet); Neto & Paiva, 1966 (p.20, Table III); Mazza, 1966 (p.69); 1967 (p.367); Ehrhardt, 1967 (p.737, geographic distribution), Rem.); Mullin & Brooks, 1967 (p.657, life history, fecondity, growth-feeding); Grice & Hulsemann, 1967 (p.14); Fleminger, 1967 a (tabl.1); Matthews, 1967 (p.159, Table 1, Rem.); De Decker, 1968 (p.45); Delalo, 1968 (p.137); Omori, 1969 (p.5, Table 1); Itoh, 1970 a (p.1, tab.2); Morris, 1970 (p.2300, 2302); Lee & al., 1971 (p.1150); Shih & al., 1971 (p.39, 147); Gamulin, 1971 (p.382, tab.3); Deevey, 1971 (p.224); Gueredrat, 1971 (p.300, fig.2, 10, Table 1, 2); Brodsky, 1972 (P.256); Roe, 1972 (p.277, tabl.1, tabl.2); 1972 a (p.327); Boucher & Thiriot, 1972 (p.47, Tableau 4); Subbaraju & Krishnamurphy, 1972 (p.25, 26 ); Heinrich, 1973 (p.95); Björnberg, 1973 (p.300, 389); Harding, 1974 (p.141, tab.2, gut contents); Corral Estrada & Pereiro Muñoz, 1974 (tab.I); Nival & al., 1974 (p.231, respiration & excrétion); Peterson & Miller, 1975 (p.642, 650, Table 3); Patel, 1975 (p.659); Boucher & al., 1975 (p.85, nutrition/enzyme); Arashkevich, 1975 (p.351, digestion time); Vives & al.: 1975 (p.35, tab.II, III, IV); Arcos, 1976 (p.85, Rem.: p.91, Table II); Peterson & Miller, 1976 (p.14, Table 1, 2, 3, abundance vs interannual variations); Deevey & Brooks, 1977 (p.256, Table 2, Station "S"); Grindley, 1977 (p.341, Table 2); Peterson & Miller, 1977 (p.717, Table 1, seasonal occurrence); Timonin & Voronina, 1977 (p.286); Carter, 1977 (1978) (p.35); Stephen & Iyer, 1979 (p.228, tab.1, 3, 4, figs.3, 4); Pipe & Coombs, 1980 (p.223, vertical occurrence); Vaissière & Séguin, 1980 (p.23, tab.1); Svetlichnyi, 1980 (p.28, Table 1, passive submersion); Sreekmaran Nair & al., 1981 (p.493, Fig.2 cont.); Shadrin & Mel'nik, 1981 (p.82, population abundance vs. food intake); Rudyakov, 1982 (p.208, Table 2); Kovalev & Shmeleva, 1982 (p.82); Vives, 1982 (p.290); Smith S.L., 1982 (p.1347, Table 5, grazing); Turner & Dagg, 1983 (p.16, 22); Landry, 1983 (p.614, development times vs. stages); Minkina, 1983 (p.38, speed swimming); Dessier, 1983 (p.89, Tableau 1, Rem., %); Scotto di Carlo & Ianora, 1983 (p.150); Scotto di Carlo & al., 1984 (p.1044); Pieper & Holliday, 1984 (p.226, Table 1, Figs.3, 7, 8); De Decker, 1984 (p.315, 362: chart); Tremblay & Anderson, 1984 (p.5); Sameoto, 1984 (p.767, vertical migration); Longhurst, 1985 (tab.2); Brenning, 1985 a (p.24, Table 2); Baars & Oosterhuis, 1985 (p.71, Table 4: gut passage time); Brinton & al., 1986 (p.228, Table 1); Fleminger, 1986 (p.84, figs. 3, 4, Rem.); Chen Y.-Q., 1986 (p.205, Table 1: abundance %, fig.6, Table 2: vertical distribution); Wishner & Allison, 1986 (tab.2); Madhupratap & Haridas, 1986 (p.105, tab.1); Hakanson, 1987 (p.881, lipid content); Cowles & al., 1987 (p.653, fig.7, ingestion); Lozano Soldevilla & al., 1988 (p.57); Jimenez-Perez & Lara-Lara, 1988; Wiebe & al., 1988 (tab.7); Ohman, 1988 (p.143, Table 1: lipid content); Cervantes-Duarte & Hernandez-Trujillo, 1989 (tab.3); Echelman & Fishelson, 1990 a (tab.2 as Rhinocalanus); Heinrich, 1990 (p.16); Timonin, 1990 (p.479); Hirakawa & al., 1990 (tab.3); Madhupratap & Haridas, 1990 (p.305, fig.6: vertical distribution night/day; fig.7: cluster); Peterson & al., 1990 (p.259, Table 1, feeding); Suarez & al., 1990 (tab.2); Baars & al., 1990 (p.538: Rem.); Arinardi, 1991 (p.295); Fransz & al., 1991 (p.9); Santos & Ramirez, 1991 (p.79); Hattori, 1991 (tab.1, Appendix); Shih & Marhue, 1991 (tab.3); Scotto di Carlo & al., 1991 (p.271); Suarez & Gasca, 1991 (tab.2); Morales C.E. & al., 1991 (p.455, Table I, grazing); Mullin, 1991 a (p.1381, reproduction & mortality variability); Hernandez-Trujillo, 1991 (1993) (tab.I); Suarez, 1992 (App.1); Heinrich, 1992 (p.86); Huntley & Lopez, 1992 (p.201, Table A1, B1, egg-adult weight, temperature-dependent production, growth rate); Ayukai & Hattori, 1992 (p.163, Table 5, fecal pellet production rate); Jiyalal Ram & Goswami, 1993 (p.129, tab.IV); Ashjian & Wishner, 1993 (p.483, abundance, species group distributions); Seguin & al., 1993 (p.23); Hays & al., 1994 (tab.1); Landry & al., 1994 (p.55, abundance, grazing); Farstey, 1994; Palomares Garcia & Vera, 1995 (tab.1); Shih & Young, 1995 (p.70); Hirakawa & al., 1995 (tab.2); Errhif & al., 1997 (p.422); Timonin, 1997 (p.83, Rem.); Park & Choi, 1997 (Appendix); Padmavati & al., 1998 (p.349); Noda & al., 1998 (p.55, Table 3, occurrence); Weslawski & Legezynska, 1998 (p.1238); Gilabert & Moreno, 1998 (tab.1, 2); Suarez-Morales, 1998 (p.345, Table 1); Suarez-Morales & Gasca, 1998 a (p.109); Ohman & al., 1998 (p.1709, organic composition, vertical distribution, ETS activity, egg production, dormancy: Table3); Verheye & al., 1998 (p.317, Table II); Mauchline, 1998 (tab.8, 21, 23, 33, 35, 46, 47, 63, 64, 65); Reid & Hunt, 1998 (p.310, figs.2, 3, Rem.); Smith S. & al., 1998 (p.2369, Table 6, moonsoon effects); Barange & al., 1998 (p.1663, Table 2, abundance vs STC region); Hernandez-Trujillo, 1999 (p.284, tab.1); Lavaniegos & Gonzalez-Navarro, 1999 (p.239, Appx.1); Corten, 1999 (p.191, Table 1, fig.3); Lapernat, 2000 (tabl.3, 4); Razouls & al., 2000 (p.343, Appendix); Fernandez-Alamo & al., 2000 (p.1139, Appendix); Pakhomov & al., 2000 (p.1663, Table 2, transect Cape Town-SANAE antarctic base); Suarez-Morales & al., 2000 (p.751, tab.1); Seridji & Hafferssas, 2000 (tab.1); Madhupratap & al., 2001 (p. 1345, vertical distribution vs. O2, figs.4, 5: clusters); d'Elbée, 2001 (tabl. 1); Hidalgo & Escribano, 2001 (p.159, tab.2); Lapernat & Razouls, 2001 (p.123, tab.1); Rebstock, 2001 (tab.2); Holmes, 2001 (p.41, as Rhinocalanus); Nakata & al., 2001 (p.335, tab.4, 5, 6, 7); Lo & al., 2001 (1139, tab.I); Sabatini & al., 2001 (p.245, fig.6); Sameoto & al., 2002 (p.13); Rebstock, 2002 (p.71, Table 3, 5, 6, Fig.2, climatic variability); Beaugrand & al., 2002 (p.1692); Beaugrand & al., 2002 (p.179, figs.5, 6); Yamaguchi & al., 2002 (p.1007, tab.1); Hsiao & al., 2004 (p.325, tab.1); Daly Yahia & al., 2004 (p.366, fig.4); Bonnet & Frid, 2004 (p.485, fig.5); CPR, 2004 (p.61, fig.183); Kazmi, 2004 (p.229); Shimode & al., 2005 (p.113 + poster); Escribano & Araneda, 2005 (p.252); Fabian & al., 2005 (178, fig.4); Berasategui & al., 2005 (p.313, fig.2); Smith & Madhupratap, 2005 (p.214, tab.6); Prusova & Smith, 2005 (p.76); Zuo & al., 2006 (p.159, tab.1, abundance, fig.8: stations group); Lopez-Ibarra & Palomares-Garcia, 2006 (p.63, Tabl. 1, seasonal abundance vs El-Niño); Lavaniegos & Jiménez-Pérez, 2006 (p.153, tab.2, 3, Rem.); Mackas & al., 2006 (L22S07, Table 2); Hooff & Peterson, 2006 (p.2610); Hwang & al., 2006 (p.943, tabl. I); Hop & al., 2006 (p.182, Table 4); Hwang & al., 2007 (p.24); Dur & al., 2007 (p.197, Table IV); Cornils & al., 2007 (p.278, Table 2); Valdés & al., 2007 (p.103: tab.1); Morales C.E. & al., 2007 (p.452, fig. 8, Rem.: p.462: abundance); Cabal & al;, 2008 (289, Table 1); Morales-Ramirez & Suarez-Morales, 2008 (p.519); Fernandes, 2008 (p.465, Tabl.2); Wishner & al., 2008 (p.163, Table 2, fig.8, oxycline); Gaard & al., 2008 (p.59, Table 1, N Mid-Atlantic Ridge); Lopez Ibarra, 2008 (p.1, Table 1, 2, figs.11, 14: abundance); Ayon & al., 2008 (p.238, Table 4: Peruvian samples); Muelbert & al., 2008 (p.1662, Table 1); Schnack-Schiel & al., 2008 (p.655, population dynamic); Lan Y.C. & al., 2008 (p.61, Table 1, % vs stations, Table 2: indicator species); C.-Y. Lee & al., 2009 (p.151, Tab.2); Galbraith, 2009 (pers. comm.); Park & Ferrari, 2009 (p.143, Table 2, fig.1, Appendix 1, biogeography); Zhang W & al., 2009 (p.266: table 2); C.E. Morales & al., 2010 (p.158, Table 1); Hidalgo & al., 2010 (p.2089, Table 2); Goetze & Ohman, 2010 (p.2110, Table 1); Mazzocchi & Di Capua, 2010 (p.425); Dvoretsky & Dvoretsky, 2010 (p.991, Table 2); Kosobokova & al., 2011 (p.29, Table 2, Rem.: Nansen Basin); Hsiao S.H. & al., 2011 (p.475, Appendix I); Andersen N.G. & al., 2011 (p.71, Fig.3: abundance); Tutasi & al., 2011 (p.791, Table 2, 3, abundance distribution vs La Niña event); Selifonova, 2011 a (p.77, Table 1, alien species in Black Sea); Mulyadi & Rumengan, 2012 (p.202, Rem.: p.204); Bode & al., 2012 (p.108, spatial distribution vs time-series, % biomass); Lavaniegos & al., 2012 (p. 11, Appendix); Salah S. & al., 2012 (p.155, Tableau 1); Dorgham & al., 2012 (p.473, Table 4: abundance vs season); Shimode & al., 2012 (p.133, life history); Alvarez-Fernandez & al., 2012 (p.21, Rem.: Table 1); Hidalgo & al., 2012 (p.134, Table 2, 3, figs.5, 6, spatial distribution vs hydrology); Takahashi M. & al., 2012 (p.393, Table 2, water type index); Teuber & al., 2013 (p.1, Table 1, abundance vs. oxygen minimum zone); Palomares-Garcia & al., 2013 (p.1009, Table I, fig.7, abundance vs environmental factors); in CalCOFI regional list (MDO, Nov. 2013; M. Ohman, comm. pers.); Kobari & al., 2013 (p.78, Table 2); Tseng & al., 2013 (p.507, seasonal abundance); Jagadeesan & al., 2013 (p.27, Table 3, seasonal variation); Bode M. & al., 2013 (p.1, Table 1, 3, respiration rate & ETS activity); Schukat & al., 2013 (p.1, Table 1, 2, fig.2, respiration, ingestion); Hirai & al., 2013 (p.1, Table I, molecular marker); Mendoza Portillo, 2013 (p.37: Fig.7, seasonal dominance, p.42: fig.10, biomass); Julies & Kaholongo, 2013 (p.78, fig.4, Rem, %); Lidvanov & al., 2013 (p.290, Table 2, % composition); Zaafa & al., 2014 (p.67, Table I, occurrence); Bonecker & a., 2014 (p.445, Table II: frequency, horizontal & vertical distributions); Lopez-Ibarra & al., 2014 (p.453, fig.6, Table 2, biogeographical affinity); Fierro Gonzalvez, 2014 (p.1, Tab. 3, 5, occurrence, abundance); Chiba S. & al., 2015 (p.968, Table 1: length vs climate); Escribano & al., 2016 (p.1, growth rate); Benedetti & al., 2016 (p.159, Table I, fig.1, functional characters); Ben Ltaief & al., 2017 (p.1, Table III, Summer relative abundance); El Arraj & al., 2017 (p.272, table 2, spatial distribution); Benedetti & al., 2018 (p.1, Fig.2: ecological functional group); Jerez-Guerrero & al., 2017 (p.1046, Table 1: temporal occurrence); Record & al., 2018 (p.2238, Table 1: diapause); Belmonte, 2018 (p.273, Table I: Italian zones); Chaouadi & Hafferssas, 2018 (p.913, Table II: occurrence); Palomares-Garcia & al., 2018 (p.178, Table 1: occurrence); Bode & al., 2018 (p.840, Table 1, respiration & ingestion rates, depth); Acha & al., 2020 (p.1, Table 3: occurrence % vs ecoregions); Hirai & al., 2020 (p.1, Fig. 5: cluster analysis (OTU), spatial distribution).
NZ: 24

Carte de distribution de Rhincalanus nasutus par zones géographiques
Espèce Rhincalanus nasutus - Carte de distribution 4issued from : G.A. Rebstock in Global change Biology, 2002, 8. [p.77, Fig.2 q, r].
Climatic regime shifts and decadal-scale variability in calanoid copepod populations off southern California (31°-35°N, 117°-122°W.
Cumulative sums of nonseasonal anomalies from the long-term means of copepod abundance from years 1950 to 2000.
A negative slope indicates a period of below-average anomalies; a positive slope indicates a period of above-average anomalies. Abrupt changes in slope indicate step changes. Step changes are marked with arrows (upward-pointing for increases, downward -pointing for decreases).
The October 1966 cruise (prior to the increase in sampling depth), March 1976 cruise (prior to the 1976-77 climatic regime shift), and October 1988 cruise (prior to the hypothesized 1989 climatic regime shift) are marked with vertical lines.
Espèce Rhincalanus nasutus - Carte de distribution 5issued from : A.A. Shmeleva in Bull. Inst. Oceanogr., Monaco, 1965, 65 (n°1351). [Table 6: 5 ]. Rhincalanus nasutus (from South Adriatic).
Dimensions, volume and Weight wet. Means for 50-60 specimens. Volume and weight calculated by geometrical method. Assumed that the specific gravity of the Copepod body is equal to 1, then the volume will correspond to the weight.

In that case, the relation of the calculated weight appeared to be 1.5-2.4 more than the weight determined by weighting according to the method recommended by E.V. Borutsky (1934) and F.D. Mordukhy-Boltovsky (1954).
Espèce Rhincalanus nasutus - Carte de distribution 6issued from : M.M. Mullin & E.R. Brooks in Limnol. Oceanogr., 1967, 12. [p.660, Fig.2].
Relative abundance of the developmental stages of Rhincalanus nasutus at various times over a 2-yr period in the California Current, a few kilometers offshore from Scripps Institution of Oceanography (La Jolla, San Diego)
The number associated which each histogram shows the total number of individuals of all stages of that species caught with net in a 90-m vertical tow.
The height of the shaded bar associated with each developmental stage shows the relative contribution of that stage to this total. If less than 10 individuals were found in the samples from any date, no histogram was drawn. Before 23 March 1965, no nauplii were sampled, so frequencies are based on copepodite stages only. Diagonal lines connect supposed generations.

Nota : After Mullin & Brooks, the local field population apparently completed 4 successive generations in the 29 weeks between 23 March and 12 October 1965, averaging 7.25 weeks per generation.
The results for 1966 were less clear, especially during spring. One generation was apparently completed in about 7.5 weeks between 26 April and 17 June, but there was a long delay in the early naupliar stages of the next generation so that a third generation was not produced until October.
Hence, only 2 generations seem to have been produced in 1966 in the same period in which 4 generations had apparently been produced in 1965.
In laboratory cultures of R. nasutus in which eggs were produced, the eggs were laid 2 or 3 weeks after the appearanfe of adult females. This and the rate of development (shown in Table 1) give a minimum egg-to-egg generation time of 7 to 8 weeks, similar to that of the field popyulation during summer 1965.
Egg production in cultures continued for an average of 7 weeks, so that the time from an egg to the completion of egg production by the resulting female was about 15 weeks, although the life span of these females might be almost twice this.

Concerning the fecundity, Mullin & Brooks indicate under ideal conditions, the total number of eggs produced by wild females believed to have copulated only a short time before capture (many were still carrying spermatophores). Four groups involving 57 females, gave average values of 103, 214, and 355 viable eggs/female for 10 weeks of egg production.
Espèce Rhincalanus nasutus - Carte de distribution 7issued from : M.M. Mullin & E.R. Brooks in Limnol. Oceanogr., 1967, 12. [p.658, Fig.1].
Vertical distribution of temperature at the sampling station in the California Current, a few kilometers offshore from Scripps Institution of Oceanography (La Jolla, San Diego) in various months (indicated by roman numerals).
Espèce Rhincalanus nasutus - Carte de distribution 8issued from : M.M. Mullin & E.R. Brooks in Limnol. Oceanogr., 1967, 12. [p.659, Table 1].
Approximate cumulative time (in days) required for development at 12°C in the laboratory based on 13 stocks of Rhincalanus nasutus.
Espèce Rhincalanus nasutus - Carte de distribution 9Issued from : S. Shimode, K. Takahashi, Y. Shimizu, T. Nonomura & A. Tsuda in Deep-Sea Res. I, 2012, 65. [p.143, Fig.10, a].
Schematic illustration of the most probable life cycle of Rhincalanus nasutus (a). Ontogenetic vertical migration during the year in the Kuroshio-Oyashio transition area
C = copepodite stage; AF = female adult; AM = male adult.
Compare with Rhincalanus rostrifrons restricted to more southerly latitudes (15-37°N) in the NW Pacific.

Nota: Dormancy in deep waters (500-1000 m) by R. nasutus might indicate a strategy to avoid the relatively high predation risks incurred in shallower waters, due to its larger body size. In contrast, the smaller body size of R. rostrifrons facilitates dormancy in shallower waters (200-500 m depth).
Espèce Rhincalanus nasutus - Carte de distribution 10Issued from : P.-E. Lapernat in DEA Océanogr. Biol., Univ. P. & M. Curie, Paris VI. July 5, 2000. [Fig.9 b].
Verical distribution of Rhincalanus nasutus at an eutrophic site (off Mauritanian coast: 20°32 'N, 18°36' W) in females (F) and males (M) (ind. per m3) in the day (white circle) and night (black circle).

Nota: Sampling in the water column 0-1000 m, one during the day and another during the night with BIONESS multiple-net: 0-75; 75-150; 150-250; 250-350; 350-450; 450-550; 550-700; 700-850; 850-965 m. In May-June 1992.
Espèce Rhincalanus nasutus - Carte de distribution 11Issued from : A. Fleminger inComposite stations of the Siboga Expedition (1899), the Snellius Expedition (1929) and R/V ''Alpha Helix'' Moro Expedition (1979).
Stations are indicated by small filled circles, Calanoides philippinensis records by open diamonds, and Rhincalanus nasutus records by a large filled circles.Note how positive records are concentrated off southwestern New Guinea.
Espèce Rhincalanus nasutus - Carte de distribution 12Issued from : M.D. Ohman, A.V. Drits, M.E. Clarke & S. Plourde in Deep-Sea Res. II, , 1998 , 45. [p.1719, Fig. 4 B].
Vertical distribution of copepod in the San Diego Trough in June and December. Adult female and copepodid stage V of Rhincalanus nasutus.
Dark symbols illustrate nightime distributions, open symbols illustrate daytime distributions, each plotted at the mid-point of the sampling interval. Sampling extended deeper in December than in June.
Sampling out in the San Diego Trough (near 32°50'N, 117°40'W) in 6-14 June 1992 and 15-22 December 1992.
For the authors, the species appears to enter dormancy as adult females, although the evidence is equivocal.
Espèce Rhincalanus nasutus - Carte de distribution 13Issued from : M.D. Ohman, A.V. Drits, M.E. Clarke & S. Plourde in Deep-Sea Res. II, , 1998 , 45. [p.1730, Table 3].
Differential dormancy of co-occuring copepods in the California Current System in the San Diego Trough.
Indices used to differentiate actively growing from dormant animals included developmental stage structure and vertical distribution; activity of aerobic metabolic enzymes (Citrate Synthase and Electron Transfer System complex); investment in depot lipids (wax esters and triacylglycerols); in situ grazing activity from gut fluorescence, and egg production rates.
Espèce Rhincalanus nasutus - Carte de distribution 14Issued from : M. Madhupratap & P. Haridas in J. Plankton Res., 12 (2). [p.313, Fig.6].
Vertical distribution of calanoid copepod (mean +1 SE), abundance No/100 m3. 63- Rhincalanus nasutus.
Night: shaded, day: unshaded.
Samples collected from 6 stations located off Cochin (India), SE Arabian Sea, November 1983, with a Multiple Closing Plankton Net (mesh aperture 300 µm), in vertical hauls at 4 depth intervalls (0-200, 200-400, 400-600, 600-1000 m).
Espèce Rhincalanus nasutus - Carte de distribution 15Issued from : Y.-Q. Chen in CalCOFI Rep., 1986, XXVII. [Fig.6, p.214].
Vertical abundance of females, males and late copepodites.

Nota: The distribution during the Krill Expedition in the Pacific east tropical (23°N to 3°S) is restricted to the middle and maximum depths sampled. South of 8°N its distribution appears to have influenced by the Equatorial Counter-current. The maximum concentration occurred between 500 and 600 m. At station 21, the maximum number of females was 11,000 individuals/m3 about 500 m. From 20°N to near the equator, this species was not present from middle depths to the surface. Numbers of females were higher than those of the male, and diel vertical migration was not apparent.
The mean percentage combined was 9.6% (day: 5.9, night: 13.2) for all samples with the bongo net .
See in Subeucalanus subtenuis figs.1, 12, 13).
Espèce Rhincalanus nasutus - Carte de distribution 16Issued from : M. Bode, R. Koppelmann, L. Teuber, W. Hagen & H. Auel inGlobal Biogeochemical Cycles, 2018, 32. [p.844, Table 1).
Cf. explanations of these measures in Calanoides natalis from the same authors.
Compare with Rhincalanus cornutus.
Espèce Rhincalanus nasutus - Carte de distribution 17Issued from : M. Bode, A. Schukat, W. Hagen & H. Auel in J. Exp. Mar. Biol. Ecol., 2013, 444. [p.3, Table 1].
Dry mass, individual respiration rate and ETS activity from the northern Benguela Current upwelling system along transects at 23°S and 26°40'S, off Walvisbay and Lüderitz (Namibia).
Relationship between individual ETS activities and individual respiration rates; mean ETS activities with standard deviations are plotted again mean respiration rates (Cf. in Calanoides natalis. The letters besides each point identifies the associated species in Table 1 (e, g, for this species) in the same authors.
Cf. Table 1: Dry mass, individual respiration rate and ETS activity.
For Conover & Corner (1968) the female respiration rate at 3-5°C were 0.39 µl O2 h ind-1 (DM: 529 µg) in the North Atlantic; For Conover (1960) at 7°C: 0.59-0.65 (DM: 826-1079 µg) North West Atlantic.
Espèce Rhincalanus nasutus - Carte de distribution 18Issued from : M. Bode, A. Kreiner, A.K. van der Plas, D.C. Louw, R. Horaeb, H. Auel & W. Hagen in PLoS ONE, 2014, 9 (5). [p.9, Fig.9, e].
Monthly abundances (no. m-2 along transect from inshore (0 nm) to offshore (70 nm) (See map).
Note patches in the spatial distributions from inshore (0 nm) and offshore (70 nm).
Compare with Calanoides natalis, Metridia lucens, Nannocalanus minor from the same authors.
Loc:
Antarct. (SW Atlant., SE Pacif.), South Georgia, Magallones region, sub-Antarct. (SW Atlant., Indian, SW & SE Pacif.), South Africa (E & W, STC region), Saldanha Bay, Namibia, Angola, Baia Farta, Dakar, off Mauritania-NW Cape Verde Is., Morocco-Mauritania, Cap Ghir, Canary Is., off Madeira, Portugal, off W Cabo Finisterre, Bay of Biscay, Argentina (southern offshore), Uruguay (continental shelf), Cabo Frio, off Rio de Janeiro, S Brazil, Argentina, Barbados Is., Yucatan, G. of Mexico, Caribbean, off Bermuda, Sargasso Sea, Station "S" (32°10'N, 64°30'W), off Cape Hatteras, off E Cape Cod, Delaware Bay (outside), Chesapeake Bay, Long Island, G. of Maine, off Woods Hole, Bay of Fundy, off SE Nova Scotia, S Davis Strait, Strait of Denmark, Fram Strait, Kongsfjorden, Spitzbergen, Wyville Thomson Ridge, Iceland, Faroe Is., Arct. (Nansen Basin), Barents Sea, Norway, Raunefjorden (rare), W & SW Ireland, North Sea, Ibero-moroccan Bay, Gibraltar Strait, Medit. (M'Diq, Alboran Sea, Habibas Is., Sidi Fredj coast, Algiers, Banyuls, Marseille, Ligurian Sea, Tyrrhenian Sea, G. of Gabes, Adriatic Sea, Black Sea), G. of Aqaba, off Sharm El-Sheikh, G. of Eilat, Red Sea, G. of Aden, G. of Oman, Arabian Sea, Somalia, Maldive Is., off Cochin, Natal, India (Saurahtra coast, Lawson's Bay, Porto Novo, Gulf of Mannar), N Indian, off S Madagascar, Nosy Bé, S Indian (subtropical convergence), E India, Bay of Bengal, Indonesia-Malaysia, Lombok Sea, Flores Sea, Arafura Sea, Banda Sea), Philippines, Viet-Nam (Cauda Bay), G. of Tonkin, China Seas (East China Sea, South China Sea), Taiwan, Kuroshio Current, S Korea S, Tsushima Straits, Japan, Kuchinoerabu Is., Kuroshio-Oyashio transition, off NE Japan, off S Shikoku Is., Station Knot, off SE Japan, Arct. (Nansen Basin), Aleutiian Is., British Columbia, Bay of Seattle, off Washington coast, Oregon (Yaquina, off Newport), California, Santa Monica Basin, W Baja California, Bahia Magdalena (rare), Gulf of California, La Paz, Guaymas Basin, W Mexico, G. of Tehuantepec, W Costa Rica, Pacif. (E equatorial), Australia (Great Barrier, New South Wales), New Zealand (Kaikoura), New Caledonia, off W Guatemala, Pacif. (equatorial & subtropical), off Panama, Bahia Cupica (Colombia), off Galapagos, off Peru, Pacif. (SE tropical), Chile ( N-S, off Valparaiso, off Santiago, Concepcion), Straits of Magellan
N: 386
Lg.:
(7) F: 5-4,5; M: 4,5-3,8; (14) F: 4,7-4,5; (22) F: 5,1-3,9; M: 3,8-2,7; (28) F: 4,75-3,85; M: 3,55; (35) F: 5-4,5; (36) F: 6,08-5,63; (38) F: 4,8-4,15; (45) F: 5,5-4; M: 4-3; (47) F: 5,1-3,9; M: 3,8; (54) F: 2,85; M: 4,3; (75) F: 4,94-2,82; (101) F: 4,37-4,08; (104) F: 4,7; M: 3,5; (116) F: 5,18; (125) F: 4,5-3,6; M: 3,81-3,74; (131) F: 6,1-3,7; (135) F: 3; M: 2,7; (142) F: 3; M: 2,7; (199) F: 5,6-4,26; M: 4,33-3,57; (207) F: 4,28-4,2; M: 3,51; (208) F: 4,8-3,9; (237) F: 4,5; (254) F: 4,7; (327) F: 5,81-4,31; M: 3,93; (290) F: 3-4,25; M: 3,35-3,4; (340) F: 3,8; (432) F: 5,2-4,2; (530) F: 4,2; M: 4; (785) F: 3,49-3,26; (786) F: 4,52-3,6; M: 3,67-3,45; (991) F: 3,9-5,5; M: 2,7-4; (1122) F: 4,05; M: 3,35; {F: 2,82-6,10; M: 2,70-4,50}

Chiba S. & al., 2015 (p.971, Table 1: Total length female (June-July) = 3.3 mm [optimal SST (°C) = 9.6].

For Hidalgo & al. (2012) copepodids V lengths: Prosome female: 3.5; urosome female: 0.6; prosome male: 3.7; urosome male: 0.7.
Rem.: épi à bathypélagique.
Sampling depth (Antarct., sub-Antarct.) : 0-500-4000 m. 280-450 m (Pipe & Coombs, 1980 at 60°N, 07°W).
Voir aussi les remarques en anglais
Dernière mise à jour : 28/10/2022

 Toute utilisation de ce site pour une publication sera mentionnée avec la référence suivante :

Razouls C., Desreumaux N., Kouwenberg J. et de Bovée F., 2005-2024. - Biodiversité des Copépodes planctoniques marins (morphologie, répartition géographique et données biologiques). Sorbonne Université, CNRS. Disponible sur http://copepodes.obs-banyuls.fr [Accédé le 21 novembre 2024]

© copyright 2005-2024 Sorbonne Université, CNRS

Webmaster
Mentions légales et informations nominatives
CNRS   Observatoire Océanologique de Banyuls sur Mer - Laboratoire Arago
Sorbonne Université

 

Version française
English version

 

Rechercher

Sur le WEB du CNRS

 


Copépodes planctoniques marins

Copépodes planctoniques marins

 

Imprimer Contact Accueil Plan du site Accès restreint Retour Une du Labo Imprimer Contact Plan du site Crédits Téléchargez les Plug-Ins